Araujo, R. P., and Franco, C. (2019). Tracking beneficial
Streptomyces strains in plant shoot, roots and rhizosphere soils.
Bartlett, J. M., and Stirling, D. (Eds.). (2003). PCR
protocols (Vol. 226, pp. 3-525). Totowa, NJ, USA:: Humana Press.
Brandes, J. C., Carraway, H., and Herman, J. G. (2007).
Optimal primer design using the novel primer design program: MSPprimer provides
accurate methylation analysis of the ATM promoter. Oncogene, 26(42),
6229-6237.
Brownie, J., Shawcross, S., Theaker, J., Whitcombe, D.,
Ferrie, R., Newton, C., and Little, S. (1997). The elimination of primer-dimer
accumulation in PCR. Nucleic acids research, 25(16),
3235-3241.
Bustin, S. A., Beaulieu, J. F., Huggett, J., Jaggi, R.,
Kibenge, F. S., Olsvik, P. A., Penning L.C., and Toegel, S. (2010). MIQE
precis: Practical implementation of minimum standard guidelines for
fluorescence-based quantitative real-time PCR experiments. BMC
molecular biology, 11(1), 1-5.
Cheung, H. H., Lee, T. L., Rennert, O. M., and Chan, W.
Y. (2009). DNA methylation of cancer genome. Birth Defects Research
Part C: Embryo Today: Reviews, 87(4), 335-350.
Chiang, Y. C., Lai, C. H., Lin, C. W., Chang, C. Y., and
Tsen, H. Y. (2014). Improvement of strain discrimination by combination of
superantigen profiles, PFGE, and RAPD for Staphylococcus aureus isolates from
clinical samples and food-poisoning cases. Foodborne pathogens and
disease, 11(6), 468-477.
Corless, C. E., Guiver, M., Borrow, R., Edwards-Jones,
V., Kaczmarski, E. B., and Fox, A. J. (2000). Contamination and sensitivity
issues with a real-time universal 16S rRNA PCR. Journal of clinical
microbiology, 38(5), 1747-1752.
Demba Diallo, M., Willems, A., Vloemans, N., Cousin, S.,
Vandekerckhove, T. T., De Lajudie, P., Gillis, M., and Van der Gucht, K.
(2004). Polymerase chain reaction denaturing gradient gel electrophoresis
analysis of the N2‐fixing bacterial diversity in soil under Acacia tortilis
ssp. raddiana and Balanites aegyptiaca in the dryland part of Senegal. Environmental
Microbiology, 6(4), 400-415.
Demeke, T., and Jenkins, G. R. (2010). Influence of DNA
extraction methods, PCR inhibitors and quantification methods on real-time PCR
assay of biotechnology-derived traits. Analytical and bioanalytical
chemistry, 396, 1977-1990.
Dieffenbach, C. W., and Dveksler, G. S. (2003). PCR
primer: a laboratory manual (No. Ed. 2). Cold Spring Harbor Laboratory
Press.
Green, S. J., Venkatramanan, R., and Naqib, A. (2015).
Deconstructing the polymerase chain reaction: understanding and correcting bias
associated with primer degeneracies and primer-template mismatches. PloS
one, 10(5), e0128122.
Higuchi, R., Fockler, C., Dollinger, G., and Watson, R.
(1993). Kinetic PCR analysis: real-time monitoring of DNA amplification
reactions. Bio/technology, 11(9), 1026-1030.
Hoshino, Y. T., and Morimoto, S. (2008). Comparison of
18S rDNA primers for estimating fungal diversity in agricultural soils using
polymerase chain reaction-denaturing gradient gel electrophoresis. Soil
science and plant nutrition, 54(5), 701-710.
Huggett, J. F., Cowen, S., and Foy, C. A. (2015).
Considerations for digital PCR as an accurate molecular diagnostic tool. Clinical
chemistry, 61(1), 79-88.
Ishino, S., and Ishino, Y. (2014). DNA polymerases as
useful reagents for biotechnology–the history of developmental research in the
field. Frontiers in microbiology, 5, 465.
Jain, M., Nijhawan, A., Tyagi, A. K., and Khurana, J. P.
(2006). Validation of housekeeping genes as internal control for studying gene
expression in rice by quantitative real-time PCR. Biochemical and
biophysical research communications, 345(2), 646-651.
Joshi, M., and Deshpande, J. D. (2010). Polymerase chain
reaction: methods, principles and application. International Journal of
Biomedical Research, 2(1), 81-97.
Kalendar, R., Lee, D., and Schulman, A. H. (2009).
FastPCR software for PCR primer and probe design and repeat search. Genes,
Genomes and Genomics, 3(1), 1-14.
Kaltenboeck, B., and Wang, C. (2005). Advances in
real‐time PCR: Application to clinical laboratory diagnostics. Advances
in clinical chemistry, 40, 219.
Kashyap, V. K., Sitalaximi, T., Chattopadhyay, P., and
Trivedi, R. (2004). DNA profiling technologies in forensic analysis. International
Journal of Human Genetics, 4(1), 11-30.
Khamlor, T., Pongpiachan, P., Parnpai, R., Punyawai, K.,
Sangsritavong, S., and Chokesajjawatee, N. (2015). Bovine embryo sex
determination by multiplex loop-mediated isothermal amplification. Theriogenology, 83(5),
891-896.
Kim, H. S., and Smithies, O. (1988). Recombinant fragment
assay for gene targetting based on the polymerase chain reaction. Nucleic
Acids Research, 16(18), 8887-8903.
Kumar, D., and Thakur, S. (2018). Molecular tools to
study preharvest food safety challenges. Preharvest Food Safety,
361-382.
Lianidou, E. S. (2016). Gene expression profiling and DNA
methylation analyses of CTCs. Molecular oncology, 10(3),
431-442.
Liu, H., and Naismith, J. H. (2008). An efficient
one-step site-directed deletion, insertion, single and multiple-site plasmid
mutagenesis protocol. BMC biotechnology, 8(1), 1-10.
Llop, P., Bonaterra, A., Penalver, J., and Lopez, M. M.
(2000). Development of a highly sensitive nested-PCR procedure using a single
closed tube for detection of Erwinia amylovora in asymptomatic plant
material. Applied and environmental microbiology, 66(5),
2071-2078.
Lorenz, T. C. (2012). Polymerase chain reaction: basic
protocol plus troubleshooting and optimization strategies. JoVE
(Journal of Visualized Experiments), (63), e3998.
Malorny, B., Paccassoni, E., Fach, P., Bunge, C., Martin,
A., and Helmuth, R. (2004). Diagnostic real-time PCR for detection of
Salmonella in food. Applied and environmental microbiology, 70(12),
7046-7052.
Mao, X., Liu, C., Tong, H., Chen, Y., and Liu, K. (2019).
Principles of digital PCR and its applications in current obstetrical and
gynecological diseases. American journal of translational research, 11(12),
7209.
Matsuda, K. (2017). PCR-based detection methods for
single-nucleotide polymorphism or mutation: real-time PCR and its substantial
contribution toward technological refinement. Advances in clinical
chemistry, 80, 45-72.
Moritz, C., and Cicero, C. (2004). DNA barcoding: promise
and pitfalls. PLoS biology, 2(10), e354.
Mullis, K. B. (1990). The unusual origin of the
polymerase chain reaction. Scientific American, 262(4),
56-65.
Mullis, K. B. (1994). The polymerase chain
reaction (Vol. 41, No. 5). Springer science and business media.
Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G.,
and Erlich, H. (1992). Specific enzymatic amplification of DNA in vitro: the
polymerase chain reaction. Biotechnology Series, 17-17.
Murphy, J., and Bustin, S. A. (2009). Reliability of
real-time reverse-transcription PCR in clinical diagnostics: gold standard or
substandard. Expert review of molecular diagnostics, 9(2),
187-197.
Neff, M. M., Neff, J. D., Chory, J., and Pepper, A. E.
(1998). dCAPS, a simple technique for the genetic analysis of single nucleotide
polymorphisms: experimental applications in Arabidopsis thaliana
genetics. The Plant Journal, 14(3), 387-392.
Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T.,
Watanabe, K., Amino, N., and Hase, T. (2000). Loop-mediated isothermal
amplification of DNA. Nucleic acids research, 28(12),
e63-e63.
Orlando, L., Gilbert, M. T. P., and Willerslev, E. (2015).
Reconstructing ancient genomes and epigenomes. Nature Reviews Genetics, 16(7),
395-408.
Overbergh, L., Giulietti, A., Valckx, D., Decallonne, B.,
Bouillon, R., and Mathieu, C. (2003). The use of real-time reverse
transcriptase PCR for the quantification of cytokine gene expression. Journal
of biomolecular techniques: JBT, 14(1), 33.
Parida, M., Sannarangaiah, S., Dash, P. K., Rao, P. V.
L., and Morita, K. (2008). Loop mediated isothermal amplification (LAMP): a new
generation of innovative gene amplification technique; perspectives in clinical
diagnosis of infectious diseases. Reviews in medical virology, 18(6),
407-421.
Patton, W. F. (2000). A thousand points of light: The
application of fluorescence detection technologies to two‐dimensional gel
electrophoresis and proteomics. ELECTROPHORESIS: An International
Journal, 21(6), 1123-1144.
Radstrom, P., Knutsson, R., Wolffs, P., Lovenklev, M.,
and Lofstrom, C. (2004). Pre-PCR processing: strategies to generate
PCR-compatible samples. Molecular biotechnology, 26,
133-146.
Rand, K. N., Ho, T., Qu, W., Mitchell, S. M., White, R.,
Clark, S. J., and Molloy, P. L. (2005). Headloop suppression PCR and its
application to selective amplification of methylated DNA sequences. Nucleic
acids research, 33(14), e127-e127.
Ririe, K. M., Rasmussen, R. P., and Wittwer, C. T.
(1997). Product differentiation by analysis of DNA melting curves during the
polymerase chain reaction. Analytical biochemistry, 245(2),
154-160.
Roux, K. H. (2009). Optimization and troubleshooting in
PCR. Cold Spring Harbor Protocols, 2009(4), pdb-ip66.
Rowlands, V., Rutkowski, A. J., Meuser, E., Carr, T. H.,
Harrington, E. A., and Barrett, J. C. (2019). Optimisation of robust singleplex
and multiplex droplet digital PCR assays for high confidence mutation detection
in circulating tumour DNA. Scientific Reports, 9(1),
12620.
Rychlik, W. J. S. W., Spencer, W. J., and Rhoads, R. E.
(1990). Optimization of the annealing temperature for DNA amplification in
vitro. Nucleic acids research, 18(21), 6409-6412.
Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J.,
Higuchi, R., Horn, G. T., Mullis K.B., and Erlich, H. A. (1988).
Primer-directed enzymatic amplification of DNA with a thermostable DNA
polymerase. Science, 239(4839), 487-491.
Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B.,
Horn, G. T., Erlich, H. A., and Arnheim, N. (1985). Enzymatic amplification of
β-globin genomic sequences and restriction site analysis for diagnosis of sickle
cell anemia. Science, 230(4732), 1350-1354.
Sanchez-Freire, V., Ebert, A. D., Kalisky, T., Quake, S.
R., and Wu, J. C. (2012). Microfluidic single-cell real-time PCR for
comparative analysis of gene expression patterns. Nature protocols, 7(5),
829-838.
Schefe, J. H., Lehmann, K. E., Buschmann, I. R., Unger,
T., and Funke-Kaiser, H. (2006). Quantitative real-time RT-PCR data analysis:
current concepts and the novel “gene expression’s CT difference” formula. Journal
of molecular medicine, 84, 901-910.
Schoske, R., Vallone, P. M., Ruitberg, C. M., and Butler,
J. M. (2003). Multiplex PCR design strategy used for the simultaneous
amplification of 10 Y chromosome short tandem repeat (STR) loci. Analytical
and bioanalytical chemistry, 375, 333-343.
Soda, M., Isobe, K., Inoue, A., Maemondo, M., Oizumi, S.,
Fujita, Y., Takeuchi, K., and North-East Japan Study Group and the ALK Lung
Cancer Study Group. (2012). A prospective PCR-based screening for the EML4-ALK
oncogene in non–small cell lung cancer. Clinical Cancer Research, 18(20),
5682-5689.
Syvanen, A. C. (2001). Accessing genetic variation:
genotyping single nucleotide polymorphisms. Nature Reviews Genetics, 2(12),
930-942.
Taylor, J. W., Geiser, D. M., Burt, A., and Koufopanou,
V. (1999). The evolutionary biology and population genetics underlying fungal
strain typing. Clinical Microbiology Reviews, 12(1),
126-146.
Templeton, J. E., Brotherton, P. M., Llamas, B.,
Soubrier, J., Haak, W., Cooper, A., and Austin, J. J. (2013). DNA capture and
next-generation sequencing can recover whole mitochondrial genomes from highly
degraded samples for human identification. Investigative genetics, 4(1),
1-13.
Wu, J., Matthaei, H., Maitra, A., Dal Molin, M., Wood, L.
D., Eshleman, J. R., Edil, B.H., and Vogelstein, B. (2011). Recurrent GNAS
mutations define an unexpected pathway for pancreatic cyst development. Science
translational medicine, 3(92), 92ra66-92ra66.