Abstract View

Author(s): Tarun Kumar Patel1

Email(s): 1tarun_rgh@yahoo.co.in

Address:

    Department of Biotechnology, Sant Guru Ghasidas Govt. P.G. College, Kurud, Dhamtari, Chhattisgarh, India

Published In:   Volume - 6,      Issue - 1,     Year - 2024

DOI: 10.52228/NBW-JAAB.2024-6-1-2  

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
Hydroponics represents a pioneering agricultural methodology known for its efficient resource management and sustainability benefits. This review delves into its evolution, advantages, challenges, and future prospects, emphasizing its transformative potential in modern farming practices. Hydroponic systems optimize resource utilization by minimizing water and nutrient consumption compared to traditional methods. They enable year-round crop production, ensuring a consistent food supply unaffected by seasonal variations and stabilizing market prices. Technological innovations such as automation and IoT integration enhance system efficiency and productivity, promising higher yields and improved sustainability. However, significant initial setup costs and the need for specialized technical expertise remain barriers to widespread adoption. Environmental benefits of hydroponics include reduced pesticide use through integrated pest management and lower carbon footprints due to localized production. These practices promote food safety and environmental health, addressing critical concerns in agriculture. Looking forward, hydroponics holds promise in advancing agricultural practices. Ongoing research and development in nutrient delivery systems and crop genetics aim to further optimize yields and sustainability. Integration with renewable energy sources like solar and wind power will enhance environmental sustainability, supporting global efforts towards resource conservation. In conclusion, hydroponics emerges as a pivotal solution to meet the challenges of modern agriculture, offering resilience, efficiency, and sustainability in food production for a rapidly changing world.

Cite this article:
Tarun Kumar Patel (2024) Growing Beyond Soil: The Future of Farming with Hydroponics. NewBioWorld A Journal of Alumni Association of Biotechnology, 6(1):07-20.DOI: https://doi.org/10.52228/NBW-JAAB.2024-6-1-2


Abdel Rahman, M. A. E. (2023). An overview of land degradation, desertification, and sustainable land management using GIS and remote sensing applications. Rendiconti Lincei. Scienze Fisiche e Naturali, 34, 767–808. https://doi.org/10.1007/s12210-023-01155-3

Adil, S., and Quraishi, A. (2023). An aphid transmitted banana bunchy top disease of banana and its detection: A Review. NewBioWorld A Journal of Alumni Association of Biotechnology,5(1):10-19.DOI: https://doi.org/10.52228/NBW-JAAB.2023-5-1-3

Aires, A. (2018). Hydroponic Production Systems: Impact on Nutritional Status and Bioactive Compounds of Fresh Vegetables. InTech. doi: 10.5772/intechopen.73011

Al Meselmani, M. A. (2023). Nutrient solution for hydroponics. In IntechOpen. https://doi.org/10.5772/intechopen.101604

Ali, F., & Srivastava, C. (2017). Futuristic urbanism: An overview of vertical farming and urban agriculture for future cities in India. International Journal of Advanced Research in Science, Engineering and Technology, 4(4), 3767-3775.

Al-Kodmany, K. (2018). The vertical farm: A review of developments and implications for the vertical city. Buildings, 8(2), 24. https://doi.org/10.3390/buildings8020024

Avgoustaki, D. D., & Xydis, G. (2020). How energy innovation in indoor vertical farming can improve food security, sustainability, and food safety?. Advances in Food Security and Sustainability5, 1–51. https://doi.org/10.1016/bs.af2s.2020.08.002

Barceló-Muñoz, A., Barceló-Muñoz, M., & Gago-Calderon, A. (2022). Effect of LED lighting on physical environment and microenvironment on in vitro plant growth and morphogenesis: The need to standardize lighting conditions and their description. Plants, 11(1), 60. https://doi.org/10.3390/plants11010060

Barrett, G. E., Alexander, P. D., Robinson, J. S., & Bragg, N. C. (2016). Achieving environmentally sustainable growing media for soilless plant cultivation systems – A review. Scientia Horticulturae, 212, 220-234. https://doi.org/10.1016/j.scienta.2016.09.030

Benke, K., & Tomkins, B. (2017). Future food-production systems: vertical farming and controlled-environment agriculture. Sustainability: Science, Practice and Policy13(1), 13–26. https://doi.org/10.1080/15487733.2017.1394054

Birkby, J. (2016). Vertical farming. In ATTRA Sustainable Agriculture; NCAT IP516, 2(1), 1-12 (p. 12). National Center for Appropriate Technology (NCAT).

Chatterjee, A., Debnath, S., & Pal, H. (2020). Implication of Urban Agriculture and Vertical Farming for Future Sustainability. IntechOpen. doi: 10.5772/intechopen.91133

Cooper, A.J. (2002). The ABC of NFT, Nutrient Film Technique: The World's first method of Crop Production without a solid rooting medium.

Cowan, N., Ferrier, L., Spears, B., Drewer, J., Reay, D., & Skiba, U. (2022). CEA systems: The means to achieve future food security and environmental sustainability? Frontiers in Sustainable Food Systems, 6. https://doi.org/10.3389/fsufs.2022.891256

Darling, N. (2020). The potential for the sustainable urban factory. In R. N. Lane & N. Rappaport (Eds.), The Design of Urban Manufacturing (1st ed., Chapter 7). Routledge. https://doi.org/10.4324/9780429489280

Eldridge, B. M., Manzoni, L. R., Graham, C. A., Rodgers, B., Farmer, J. R., & Dodd, A. N. (2020). Getting to the roots of aeroponic indoor farming. New Phytologist. https://doi.org/10.1111/nph.16780

Fathidarehnijeh, E., Nadeem, M., Cheema, M., Thomas, R., Krishnapillai, M., & Galagedara, L. (2024). Current perspective on nutrient solution management strategies to improve the nutrient and water use efficiency in hydroponic systems. Canadian Journal of Plant Science, 104(2), 88-102. https://doi.org/10.1139/cjps-2023-0034

Fuentes-Peñailillo, F., Gutter, K., Vega, R., & Silva, G. C. (2024). New generation sustainable technologies for soilless vegetable production. Horticulturae, 10(1), 49. https://doi.org/10.3390/horticulturae10010049

Gamage, A., Gangahagedara, R., Gamage, J., Jayasinghe, N., Kodikara, N., Suraweera, P., & Merah, O. (2023). Role of organic farming for achieving sustainability in agriculture. Farming System, 1(1), 100005. https://doi.org/10.1016/j.farsys.2023.100005

Garzón, J., Montes, L., Garzón, J., & Lampropoulos, G. (2023). Systematic review of technology in aeroponics: Introducing the technology adoption and integration in sustainable agriculture model. Agronomy, 13(10), 2517. https://doi.org/10.3390/agronomy13102517

Ghiasi, M., Wang, Z., Mehrandezh, M., & Paranjape, R. (2024). A systematic review of optimal and practical methods in design, construction, control, energy management and operation of smart greenhouses. IEEE Access, 12, 2830-2853. https://doi.org/10.1109/ACCESS.2023.3346436

Gómez, C., Currey, C. J., Dickson, R. W., Kim, H., Hernández, R., Sabeh, N. C., Raudales, R. E., Brumfield, R. G., Laury-Shaw, A., Wilke, A. K., Lopez, R. G., & Burnett, S. E. (2019). Controlled Environment Food Production for Urban Agriculture. HortScience horts54(9), 1448-1458. https://doi.org/10.21273/HORTSCI14073-19

Gomiero, T. (2016). Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability, 8(3), 281. https://doi.org/10.3390/su8030281

Gürsu, H. (2024). Waste-based vertical planting system proposal to increase productivity in sustainable horticulture; “PETREE”. Sustainability, 16(8), 3125. https://doi.org/10.3390/su16083125

Hosny, K. M., El-Hady, W. M., & Samy, F. M. (2024). Technologies, protocols, and applications of Internet of Things in greenhouse farming: A survey of recent advances. Information Processing in Agriculture. https://doi.org/10.1016/j.inpa.2024.04.002

Ingrao, C., Strippoli, R., Lagioia, G., & Huisingh, D. (2023). Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon9(8), e18507. https://doi.org/10.1016/j.heliyon.2023.e18507

Janick, J. (1983). The nutrient film technique. In J. Janick (Ed.), Horticultural reviews (Vol. 5, pp. 1–44). John Wiley & Sons. https://doi.org/10.1002/9781118060728.ch1

Kabir, M. S. N., Reza, M. N., Chowdhury, M., Ali, M., Samsuzzaman, Ali, M. R., Lee, K. Y., & Chung, S.-O. (2023). Technological trends and engineering issues on vertical farms: A review. Horticulturae, 9(11), 1229. https://doi.org/10.3390/horticulturae9111229

Kennard, N., Stirling, R., Prashar, A., & Lopez-Capel, E. (2020). Evaluation of recycled materials as hydroponic growing media. Agronomy, 10(8), 1092. https://doi.org/10.3390/agronomy10081092

Kim, J., Park, H., Seo, C., Kim, H., Choi, G., Kim, M., Kim, B., & Lee, W. (2024). Sustainable and inflatable aeroponics smart farm system for water efficiency and high-value crop production. Applied Sciences, 14(11), 4931. https://doi.org/10.3390/app14114931

Kumar, P., & Saini, S. (2020). Nutrients for Hydroponic Systems in Fruit Crops. IntechOpen. doi: 10.5772/intechopen.90991

Kumawat, A., Yadav, D., Samadharmam, K., & Rashmi, I. (2021). Soil and Water Conservation Measures for Agricultural Sustainability. IntechOpen. doi: 10.5772/intechopen.92895

Lachheb, A., Marouani, R., Mahamat, C., Skouri, S., & Bouadila, S. (2024). Fostering sustainability through the integration of renewable energy in an agricultural hydroponic greenhouse. Engineering Technology and Applied Science Research, 14(2), 13398–13407.

Lakhiar, I. A., Gao, J., Syed, T. N., Chandio, F. A., & Buttar, N. A. (2018). Modern plant cultivation technologies in agriculture under controlled environment: A review on aeroponics. Journal of Plant Interactions, 13(1), 338-352. https://doi.org/10.1080/17429145.2018.1472308

Lanoue, J., St Louis, S., Little, C., & Hao, X. (2022). Continuous lighting can improve yield and reduce energy costs while increasing or maintaining nutritional contents of microgreens. Frontiers in plant science13, 983222. https://doi.org/10.3389/fpls.2022.983222

Lee, S., & Lee, J. (2015). Beneficial bacteria and fungi in hydroponic systems: Types and characteristics of hydroponic food production methods. Scientia Horticulturae, 195, 206-215. https://doi.org/10.1016/j.scienta.2015.09.011

Mehra, M., Saxena, S., Sankaranarayanan, S., Tom, R. J., & Veeramanikandan, M. (2018). IoT based hydroponics system using deep neural networks. Computers and Electronics in Agriculture, 155, 473-486. https://doi.org/10.1016/j.compag.2018.10.015

Milestad, R., Carlsson-Kanyama, A., & Schaffer, C. (2020). The Högdalen urban farm: A real case assessment of sustainability attributes. Food Security, 12(6), 1461-1475. https://doi.org/10.1007/s12571-020-01045-8

Min, K., Ahn, J., & Lee, E.-S. (2023). Identification of factors for active use of rooftop greenhouses in Korea: Based on analysis of foreign exemplary cases. Journal of People Plants Environment, 26(6), 617-635. https://doi.org/10.11628/ksppe.2023.26.6.617

Molari, M., Dominici, L., & Comino, E. (2024). Experimenting growing media through local bio-resources valorisation: A design-oriented approach for living walls. Journal of Cleaner Production, 436, 140446. https://doi.org/10.1016/j.jclepro.2023.140446

Nájera, C., Gallegos-Cedillo, V. M., Ros, M., & Pascual, J. A. (2022). LED lighting in vertical farming systems enhances bioactive compounds and productivity of vegetable crops. Biology and Life Sciences Forum, 16(1), 24. https://doi.org/10.3390/IECHo2022-12514

Nájera, C., Gallegos-Cedillo, V. M., Ros, M., & Pascual, J. A. (2022). LED lighting in vertical farming systems enhances bioactive compounds and productivity of vegetable crops. Biology and Life Sciences Forum, 16(1), 24. https://doi.org/10.3390/IECHo2022-12514

Neo, D. C. J., Ong, M. M. X., Lee, Y. Y., Teo, E. J., Ong, Q., Tanoto, H., Xu, J., Ong, K. S., & Suresh, V. (2022). Shaping and tuning lighting conditions in controlled environment agriculture: A review. ACS Agricultural Science & Technology, 2(1), 3-16. https://doi.org/10.1021/acsagscitech.1c00241

Niu, G., & Masabni, J. (2022). Hydroponics. In T. Kozai, G. Niu, & J. Masabni (Eds.), Plant factory: Basics, applications and advances (pp. 153-166). Academic Press. https://doi.org/10.1016/B978-0-323-85152-7.00023-9

Okomoda, V. T., Oladimeji, S. A., Solomon, S. G., Olufeagba, S. O., Ogah, S. I., & Ikhwanuddin, M. (2023). Aquaponics production system: A review of historical perspective, opportunities, and challenges of its adoption. Food Science & Nutrition, 11, 1157–1165. https://doi.org/10.1002/fsn3.3154

Orakwue, S. I., Al-Khafaji, H. M. R., Ikenyiri, V. C., & Godson, V. C. (2022). Solar powered automated hydroponic farming system with IoT feedback. Journal of Information Technology Management, 14(3), 26-38. https://doi.org/10.22059/jitm.2022.87261

Ozier-Lafontaine, H., & Lesueur-Jannoyer, M. (2014). Plant nutrition: From liquid medium to micro-farm. In H. Ozier-Lafontaine & M. Lesueur-Jannoyer (Eds.), Sustainable agriculture reviews (Vol. 14, Chapter 12, pp. 449–508). Springer. https://doi.org/10.1007/978-3-319-06016-3_12

Pattillo, D. A., Hager, J. V., Cline, D. J., Roy, L. A., & Hanson, T. R. (2022). System design and production practices of aquaponic stakeholders. PloS one17(4), e0266475. https://doi.org/10.1371/journal.pone.0266475

Poulet, L., Massa, G. D., Morrow, R. C., Bourget, C. M., Wheeler, R. M., & Mitchell, C. A. (2014). Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation. Life Sciences in Space Research, 2, 43-53. https://doi.org/10.1016/j.lssr.2014.06.002

Proksch, G., & Ianchenko, A. (2023). Commercial rooftop greenhouses: Technical requirements, operational strategies, economic considerations, and future opportunities. In P. Droege (Ed.), Urban and Regional Agriculture (pp. 503-532). Academic Press. https://doi.org/10.1016/B978-0-12-820286-9.00009-1

Quagrainie, K. K., Flores, R. M. V., Kim, H. J., & McClain, V. (2017). Economic analysis of aquaponics and hydroponics production in the U.S. Midwest. Journal of Applied Aquaculture30(1), 1–14. https://doi.org/10.1080/10454438.2017.1414009

Ragaveena, S., Shirly Edward, A., & Surendran, U. (2021). Smart controlled environment agriculture methods: A holistic review. Reviews in Environmental Science and Biotechnology, 20, 887–913. https://doi.org/10.1007/s11157-021-09591-z

Rahman, M. A., Chakraborty, N. R., Sufiun, A., Banshal, S. K., & Tajnin, F. R. (2024). An AIoT-based hydroponic system for crop recommendation and nutrient parameter monitorization. Smart Agricultural Technology, 8, 100472. https://doi.org/10.1016/j.atech.2024.100472

Rahman, M. M., Field, D. L., Ahmed, S. M., Hasan, M. T., Basher, M. K., & Alameh, K. (2021). LED Illumination for High-Quality High-Yield Crop Growth in Protected Cropping Environments. Plants (Basel, Switzerland)10(11), 2470. https://doi.org/10.3390/plants10112470

Rahmat, A., & Wibowo, G. W. (2023). Smart hydroponic monitoring using Internet of Things (IoT's) supported by hybrid solar system. IOP Conference Series: Earth and Environmental Science, 1251, 012067. https://doi.org/10.1088/1755-1315/1251/1/012067

Rajaseger, G., Chan, K. L., Yee Tan, K., Ramasamy, S., Khin, M. C., Amaladoss, A., & Kadamb Haribhai, P. (2023). Hydroponics: current trends in sustainable crop production. Bioinformation19(9), 925–938. https://doi.org/10.6026/97320630019925

Rajendran, S., Domalachenpa, T., Arora, H., Li, P., Sharma, A., & Rajauria, G. (2024). Hydroponics: Exploring innovative sustainable technologies and applications across crop production, with Emphasis on potato mini-tuber cultivation. Heliyon10(5), e26823. https://doi.org/10.1016/j.heliyon.2024.e26823

Rhodes C. J. (2014). Soil erosion, climate change and global food security: challenges and strategies. Science progress97(Pt 2), 97–153. https://doi.org/10.3184/003685014X13994567941465

Richter, J. L., Tähkämö, L., & Dalhammar, C. (2019). Trade-offs with longer lifetimes? The case of LED lamps considering product development and energy contexts. Journal of Cleaner Production, 226, 195-209. https://doi.org/10.1016/j.jclepro.2019.03.331

Sangeetha, T., & Periyathambi, E. (2024). Automatic nutrient estimator: distributing nutrient solution in hydroponic plants based on plant growth. PeerJ. Computer science10, e1871. https://doi.org/10.7717/peerj-cs.1871

Schoch, D. (2022). Hydroponic lettuce was safe, until it wasn't. The New York Times, p. D4(L). Gale Academic OneFile. https://link.gale.com/apps/doc/A702301881/AONE?u=anon~a07d623d&sid=googleScholar&xid=4773480a

Sela Saldinger, S., Rodov, V., Kenigsbuch, D., & Bar-Tal, A. (2023). Hydroponic agriculture and microbial safety of vegetables: Promises, challenges, and solutions. Horticulturae, 9(1), 51. https://doi.org/10.3390/horticulturae9010051

Sembin, M. S., Surankulov, S. Z., & Akhmedova, E. A. (2019). The experience of research of urban reserves for the development of urban agriculture in modern megacities. Urban Construction and Architecture, 9(3), 151-158. https://doi.org/10.17673/Vestnik.2019.03.19

Sena, S., Kumari, S., Kumar, V., & Husen, A. (2024). Light emitting diode (LED) lights for the improvement of plant performance and production: A comprehensive review. Current Research in Biotechnology, 7, 100184. https://doi.org/10.1016/j.crbiot.2024.100184

Sharath Kumar, M., Heuvelink, E., & Marcelis, L. F. M. (2020). Vertical farming: Moving from genetic to environmental modification. Trends in Plant Science, 25(8), 724-727. https://doi.org/10.1016/j.tplants.2020.05.012

Soussi, M., Chaibi, M. T., Buchholz, M., & Saghrouni, Z. (2022). Comprehensive review on climate control and cooling systems in greenhouses under hot and arid conditions. Agronomy, 12(3), 626. https://doi.org/10.3390/agronomy12030626

Souza, V., Gimenes, R. M. T., de Almeida, M. G., Farinha, M. U. S., Bernardo, L. V. M., & Ruviaro, C. F. (2023). Economic feasibility of adopting a hydroponics system on substrate in small rural properties. Clean technologies and environmental policy, 1–15. https://doi.org/10.1007/s10098-023-02529-9

Stegelmeier, A. A., Rose, D. M., Joris, B. R., & Glick, B. R. (2022). The use of PGPB to promote plant hydroponic growth. Plants, 11(20), 2783. https://doi.org/10.3390/plants11202783

Tataraki, K. G., Kavvadias, K. C., & Maroulis, Z. B. (2019). Combined cooling heating and power systems in greenhouses: Grassroots and retrofit design. Energy, 189, 116283. https://doi.org/10.1016/j.energy.2019.116283

Tatas, K., Al-Zoubi, A., Christofides, N., Zannettis, C., Chrysostomou, M., Panteli, S., & Antoniou, A. (2022). Reliable IoT-based monitoring and control of hydroponic systems. Technologies, 10(1), 26. https://doi.org/10.3390/technologies10010026

Thakur, P., & Malhotra, M. (2023). Role of IoT in automated hydroponic system: A review. In P. Dutta, S. Chakrabarti, A. Bhattacharya, S. Dutta, & V. Piuri (Eds.), Emerging technologies in data mining and information security (Vol. 491, pp. 417-428). Springer, Singapore. https://doi.org/10.1007/978-981-19-4193-1_33

Van de Wiel, C. C. M., van der Linden, C. G., & Scholten, O. E. (2016). Improving phosphorus use efficiency in agriculture: Opportunities for breeding. Euphytica, 207(1), 1-22. https://doi.org/10.1007/s10681-015-1572-3

Van Gerrewey, T., Boon, N., & Geelen, D. (2022). Vertical farming: The only way is up? Agronomy, 12(1), 2. https://doi.org/10.3390/agronomy12010002

Velazquez-Gonzalez, R. S., Garcia-Garcia, A. L., Ventura-Zapata, E., Barceinas-Sanchez, J. D. O., & Sosa-Savedra, J. C. (2022). A review on hydroponics and the technologies associated for medium- and small-scale operations. Agriculture, 12(5), 646. https://doi.org/10.3390/agriculture12050646

Verdoliva, S. G., Gwyn-Jones, D., Detheridge, A., & Robson, P. (2021). Controlled comparisons between soil and hydroponic systems reveal increased water use efficiency and higher lycopene and β-carotene contents in hydroponically grown tomatoes. Scientia horticulturae279, 109896. https://doi.org/10.1016/j.scienta.2021.109896

Vox, G., Teitel, M., Pardossi, A., Minuto, A., Tinivella, F., & Schettini, E. (2010). Sustainable Greenhouse Systems. In A. Salazar & I. Rios (Eds.), Sustainable Agriculture: Technology, Planning and Management (pp. 1-79). Nova Science Publishers, Inc.

Wang, X. (2022). Managing land carrying capacity: Key to achieving sustainable production systems for food security. Land, 11(4), 484. https://doi.org/10.3390/land11040484

Wheeler, R. M., Mackowiak, C. L., Sager, J. C., Knott, W. M., & Hinkle, C. R. (1990). Potato growth and yield using nutrient film technique (NFT). American potato journal67, 177–187. https://doi.org/10.1007/BF02987070

Wood, J., Wong, C., & Paturi, S. (2020). Special Issue: Sustainable tropical urbanism. eTropic, 19(2). http://dx.doi.org/10.25120/etropic.19.2.2020.3745

Zaręba, A., Krzemińska, A., & Kozik, R. (2021). Urban vertical farming as an example of nature-based solutions supporting a healthy society living in the urban environment. Resources, 10(11), 109. https://doi.org/10.3390/resources10110109

Zhao, Z., Xu, T., Pan, X., Susanti, White, J. C., Hu, X., Miao, Y., Demokritou, P., & Ng, K. W. (2022). Sustainable nutrient substrates for enhanced seedling development in hydroponics. ACS Sustainable Chemistry & Engineering, 10(26), 8506–8516. https://doi.org/10.1021/acssuschemeng.2c01668

Related Images:



Recent Images



Isolation and characterization of multiple Drug resistant bacteria isolated from poultry waste water
Growing Beyond Soil: The Future of Farming with Hydroponics
Survey of Indoor Aeromycoflora of Guru Ghasidas Museum in Summer Season
Nature’s Defender: The Antimicrobial Potential of spices– An Overview
A Study on Polyherbal Skin Ointment: Formulation and Evaluation
Therapeutic Use of Some Common Medicinal Plants for the Treatment of Major Life Style Diseases of Chhattisgarh
Butterflies and Their Conservation Status on the Campus of Sant Guru Ghasidas Government P.G. College Kurud, Chhattisgarh, India
Fermentation of Tomato Juice with S. cerevisiae has enhanced nutrition and shelf-life
Review on double haploid in rice plant (Oryza sativa L.)
A  Review of Clinical Aspect of Dhatura: According to Ayurveda

Tags


Recomonded Articles:

Author(s): Smriti Adil; Afaque Quraishi*

DOI: 10.52228/NBW-JAAB.2023-5-1-6         Access: Open Access Read More

Author(s): Alka Kaushik*; S.K. Jadhav

DOI: 10.52228/NBW-JAAB.2022-4-2-6         Access: Open Access Read More

Author(s): Tarun Kumar Patel

DOI: 10.52228/NBW-JAAB.2024-6-1-2         Access: Open Access Read More